29 research outputs found

    High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers

    Get PDF
    This paper presents the high-impedance fault (HIF) detection and identification in medium-voltage distribution network of 13.8 kV using discrete wavelet transform (DWT) and intelligence classifiers such as adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM). The three-phase feeder network is modelled in MATLAB/Simulink to obtain the fault current signal of the feeder. The acquired fault current signal for various types of faults such as three-phase fault, line to line, line to ground, double line to ground and HIF is sampled using 1st, 2nd, 3rd, 4th and 5th level of detailed coefficients and approximated by DWT analysis to extract the feature, namely standard deviation (SD) values, considering the time-varying fault impedance. The SD values drawn by DWT technique have been used to train the computational intelligence-based classifiers such as fuzzy, Bayes, multi-layer perceptron neural network, ANFIS and SVM. The performance indices such as mean absolute error, root mean square error, kappa statistic, success rate and discrimination rate are compared for various classifiers presented. The results showed that the proffered ANFIS and SVM classifiers are more effective and their performance is substantially superior than other classifiers

    A Harris Hawks Optimization Based Single- and Multi-Objective Optimal Power Flow Considering Environmental Emission

    Get PDF
    The electric sector is majorly concerned about the greenhouse and non-greenhouse gas emissions generated from both conventional and renewable energy sources, as this is becoming a major issue globally. Thus, the utilities must adhere to certain environmental guidelines for sustainable power generation. Therefore, this paper presents a novel nature-inspired and population-based Harris Hawks Optimization (HHO) methodology for controlling the emissions from thermal generating sources by solving single and multi-objective Optimal Power Flow (OPF) problems. The OPF is a non-linear, non-convex, constrained optimization problem that primarily aims to minimize the fitness function by satisfying the equality and inequality constraints of the system. The cooperative behavior and dynamic chasing patterns of hawks to pounce on escaping prey is modeled mathematically to minimize the objective function. In this paper, fuel cost, real power loss and environment emissions are regarded as single and multi-objective functions for optimal adjustments of power system control variables. The different conflicting framed multi-objective functions have been solved using weighted sums using a no-preference method. The presented method is coded using MATLAB software and an IEEE (Institute of Electrical and Electronics Engineers) 30-bus. The system was used to demonstrate the effectiveness of selective objectives. The obtained results are compared with the other Artificial Intelligence (AI) techniques such as the Whale Optimization Algorithm (WOA), the Salp Swarm Algorithm (SSA), Moth Flame (MF) and Glow Warm Optimization (GWO). Additionally, the study on placement of Distributed Generation (DG) reveals that the system losses and emissions are reduced by an amount of 9.8355% and 26.2%, respectively

    High impedance fault detection in medium voltage distribution network using discrete wavelet transform and adaptive neuro-fuzzy inference system

    Get PDF
    This paper presents a method to detect and classify the high impedance fault that occur in the medium voltage distribution network using discrete wavelet transform (DWT) and adaptive neuro-fuzzy inference system (ANFIS). The network is designed using Matlab software and various faults such as high impedance, symmetrical and unsymmetrical fault have been applied to study the effectiveness of the proposed ANFIS classifier method. This is achieved by training the ANFIS classifier using the features (standard deviation values) extracted from the three phase fault current signal by DWT technique for various cases of fault with different values of fault resistance in the system. The success and discrimination rate obtained for identifying and classifying the high impedance fault from the proffered method is 100% whereas the values are 66.7% and 85% respectively for conventional fuzzy based approach. The results indicate that the proposed method is more efficient to identify and discriminate the high impedance fault accurately from other power system faults in the system

    A Hankel Matrix Based Reduced Order Model for Stability Analysis of Hybrid Power System Using PSO-GSA Optimized Cascade PI-PD Controller for Automatic Load Frequency Control

    Get PDF
    This paper presents the automatic load frequency control (ALFC) of two-area multisource hybrid power system (HPS). The interconnected HPS model consists of conventional and renewable energy sources operating in disparate combinations to balance the generation and load demand of the system. In the proffered work, the stability analysis of nonlinear dynamic HPS model was analyzed using the Hankel method of model order reduction. Also, an attempt was made to apply cascade proportional integral - proportional derivative (PI-PD) control for HPS. The gains of the controller were optimized by minimizing the integral absolute error (IAE) of area control error using particle swarm optimization-gravitational search algorithm (PSO-GSA) optimization technique. The performance of cascade control was compared with other classical controllers and the efficiency of this approach was studied for various cases of HPS model. The result shows that the cascade control produced better transient and steady state performances than those of the other classical controllers. The robustness analysis also reveals that the system overshoots/undershoots in frequency response pertaining to random change in wind power generation and load perturbations were significantly reduced by the proposed cascade control. In addition, the sensitivity analysis of the system was performed, with the variation in step load perturbation (SLP) of 1% to 5%, system loading and inertia of the system by ±25% of nominal values to prove the efficiency of the controller. Furthermore, to prove the efficiency of PSO-GSA tuned cascade control, the results were compared with other artificial intelligence (AI) methods presented in the literature. Further, the stability of the system was analyzed in frequency domain for different operating cases

    A Matignon’s theorem based stability analysis of hybrid power system for automatic load frequency control using atom search optimized FOPID controller

    Get PDF
    The large-scale penetration of intermittent Renewable Energy (RE) sources such as wind and solar power generation may cause a problem of frequency aberration of interconnected Hybrid Power System (HPS). This occurs when the load frequency control of interconnected system is unable to compensate the power balance between generation and load demand. Also owing to the enhancement of future transport, the Plug-in Electric Vehicle (PEV) plays a significant role to customer at demand side. Thus, the PEV can act as a power control to compensate the power balance in Renewable Energy integrated power system. This paper presents a physics inspired Atom Search Optimization (ASO) algorithm for tuning the parameters of Fractional Order Proportional-Integral-Derivative (FOPID) controller for Automatic Load Frequency control of HPS. In this proposed work, an attempt has been made to analyze the frequency stability of HPS using Matignon’s theorem. The interconnected HPS consists of reheat thermal power system, RE sources such as wind and solar thermal power generation associated with energy storage devices namely aqua electrolyzer, fuel cell and electric vehicle. The gain and fractional terms of the controller were obtained by minimizing the Integral Time Absolute Error of interconnected system. The robustness of ASO-tuned FOPID controller is tested on two-area HPS that was modelled using MATLAB/Simulink. The results obtained were then compared with other fractional order and classical integer order controllers. From the simulation results, it is inferred that the proposed ASO-tuned FOPID controller gives superior transient and steady-state response compared with other controllers. Moreover, the self-adaptiveness and robustness of the controller was validated to account for the change in RE power generations and system parameters. Furthermore, the effectiveness of the method is proved by comparing its performance with the recent literature works. The real-time applicability of proffered controller is validated in hardware-in-the-loop simulation using Real Time Digital Simulator

    Automatic Load Frequency Control of a Multi-Area Dynamic Interconnected Power System Using a Hybrid PSO-GSA-Tuned PID Controller

    No full text
    This paper proposes a new population-based hybrid particle swarm optimized-gravitational search algorithm (PSO-GSA) for tuning the parameters of the proportional-integral-derivative (PID) controller of a two-area interconnected dynamic power system with the presence of nonlinearities such as generator rate constraints (GRC) and governor dead-band (GDB). The tuning of controller parameters such as Kp, Ki, and Kd are obtained by minimizing the objective function formulated using the steady-state performance indices like Integral absolute error (IAE) of tie-line power and frequency deviation of interconnected system. To test the robustness of the propounded controller, the system is studied with system uncertainties, such as change in load demand, synchronizing power coefficient and inertia constant. The two-area interconnected power system (TAIPS) is modeled and simulated using Matlab/Simulink. The results exhibit that the steady-state and transient performance indices such as IAE, settling time, and control effort are impressively enhanced by an amount of 87.65%, 15.39%, and 91.17% in area-1 and 86.46%, 41.35%, and 91.04% in area-2, respectively, by the proposed method compared to other techniques presented. The minimum control effort of PSO-GSA-tuned PID controller depicts the robust performance of the controller compared to other non-meta-heuristic and meta-heuristic methods presented. The proffered method is also validated using the hardware-in-the-loop (HIL) real-time digital simulation to study the effectiveness of the controller

    Recurrent neural network approach for stability analysis and special protection scheme of power systems with distributed generation

    Get PDF
    Power system stability and protection is important due to the complexity of power system, uncertainties in load, generation and integration of large number of renewable energy sources that forces the system to operate close to its stability limits. Voltage stability analysis (VSA) is a part of static stability analysis which involves performing power flow analysis (PFA). The Newton Raphson (NR) based PFA technique is conventionally used for VSA which requires formation and inversion of Jacobian matrix that increases the computational burden and requires large memory. Hence, a Jacobian less power flow technique using Recurrent Hopfield Neural Network (HNN) has been proposed for on-line contingency ranking (CR) and VSA. Furthermore, the potential of proposed Recurrent HNN is used for analyzing the frequeny stability of the power system by employing advanced controllers in automatic load frequency control (ALFC) application. The conventional design of gain parameters of proportional-integral-derivative (PID) controller has poor performance in case of large disturbanaces due to its static gain. By using the proposed Recurrent HNN method of tuning the PID controller, the gain values become self-adaptive to handle the system uncertainties and restore to steady state quickly. Moreover, to enhance the reliability and stability of the power system in case of large disturbances (like severe fault or contingencies) that leads to cascading failures or blackouts, a special protection scheme to detect the high impedance fault (HIF) has been proposed using Recurrent Long short term memory (LSTM) network as the conventional protection scheme fails to detect the HIF that occurs in the power network. The results obtained from the developed PFA technique reveal that the convergence time is improved by 32 % to 76 % than conventional approaches. In case of ALFC, the proposed h-HNN based PID controller is studied in single- and multi-loop (cascade) for multi-area power system. The results obtained prove that the proposed design of h-HNN based controller outperforms by 13.22 % to 98.55 %, 12 % to 99 %, and 18 % to 22 % in terms of steady state performance indices, transient performance indices, and control effort, respectively than other tuning methods. In terms of detection of HIF, the proposed Recurrent LSTM network method is validated in IEEE 13-bus power network integrated with solar photovoltaic system. The results obtained reveal that the proposed LSTM network gives the maximum classification accuracy of 91.21 % with a success rate of 92.42 % in identifying the HIF compared to other intelligence classifiers

    PSO-Based Model Predictive Control for Load Frequency Regulation with Wind Turbines

    No full text
    With the high penetration of wind turbines, many issues need to be addressed in relation to load frequency control (LFC) to ensure the stable operation of power grids. The particle swarm optimization-based model predictive control (PSO-MPC) approach is presented to address this issue in the context of LFC with the participation of wind turbines. The classical MPC model was modified to incorporate the particle swarm optimization algorithm for the power generation model to regulate the system frequency. In addition to addressing the unpredictability of wind turbine generation, the presented PSO-MPC strategy not only addresses the randomness of wind turbine generation, but also reduces the computation burden of traditional MPC. The simulation results validate the effectiveness and feasibility of the PSO-MPC approach as compared with other state-of-the-art strategies

    A Chaotic Search-Based Hybrid Optimization Technique for Automatic Load Frequency Control of a Renewable Energy Integrated Power System

    No full text
    In this work, a chaotic search-based hybrid Sperm Swarm Optimized-Gravitational Search Algorithm (CSSO-GSA) is proposed for automatic load frequency control (ALFC) of a hybrid power system (HPS). The HPS model is developed using multiple power sources (thermal, bio-fuel, and renewable energy (RE)) that generate power to balance the system’s demand. To regulate the frequency of the system, the control parameters of the proportional-integral-derivative (PID) controller for ALFC are obtained by minimizing the integral time absolute error of HPS. The effectiveness of the proposed technique is verified with various combinations of power sources (all sources, thermal with bio-fuel, and thermal with RE) connected into the system. Further, the robustness of the proposed technique is investigated by performing a sensitivity analysis considering load variation and weather intermittency of RE sources in real-time. However, the type of RE source does not have any severe impact on the controller but the uncertainties present in RE power generation required a robust controller. In addition, the effectiveness of the proposed technique is validated with comparative and stability analysis. The results show that the proposed CSSO-GSA strategy outperforms the SSO, GSA, and hybrid SSO-GSA methods in terms of steady-state and transient performance indices. According to the results of frequency control optimization, the main performance indices such as settling time (ST) and integral time absolute error (ITAE) are significantly improved by 60.204% and 40.055% in area 1 and 57.856% and 39.820% in area 2, respectively, with the proposed CSSO-GSA control strategy compared to other existing control methods

    Heterogeneous learning method of ensemble classifiers for identification and classification of power quality events and fault transients in wind power integrated microgrid

    No full text
    This paper proposes heterogeneous based ensemble Classifiers (voting and stacking method) to identify and classify different power system disturbances (power quality (PQ), faults, transients, and wind power variation) in wind integrated microgrid network. In the pre-processing stage of classification, a Discrete wavelet transform (DWT) technique is applied to extract the features from power system disturbance signals. The classification process for the proposed ensemble models involves two levels of classification. At the first level, the extracted features from the simulated power system events are used to learn the different individual base classifiers (logistic regression (LR), K-Nearest Neighbor (KNN), and J48 Decision tree (JDT)]. In second stage, a Meta-level classification is carried out based on predictions of base classifiers to get final predictions of class labels. First, the proposed ensemble models are utilized to discriminate the power system disturbances under random varying wind power condition and the predictive results (classification accuracy and performance indices) of ensemble models are compared with individual base classifiers (LR, KNN., and JDT). In addition, a sensitivity analysis is carried out under real time varying wind power condition and noisy environment of event signals to verify the effectiveness of ensemble models in further level. Furthermore, the robustness of proposed stacking ensemble model is verified with classification of single and combined PQ events of synthetic data, generated from the mathematical based PQ model software Predictions results under the different conditions show that stacking ensemble model offers substantial performance and discriminates the power disturbances with higher accuracy of classification than base classifiers and voting ensemble model
    corecore